Microlocal analysis of imaging operators for effective common offset seismic reconstruction
نویسندگان
چکیده
منابع مشابه
Microlocal Analysis of a Seismic Linearized Inverse Problem.
Microlocal analysis of a seismic linearized inverse problem. Abstract: The seismic inverse problem is to determine the wavespeed c(x) in the interior of a medium from measurements at the boundary. In this paper we analyze the linearized inverse problem in general acoustic media. The problem is to nd a left inverse of the linearized forward map F, or, equivalently, to nd the inverse of the norma...
متن کاملMicrolocal Analysis of SAR Imaging of a Dynamic Reflectivity Function
In this article we consider four particular cases of Synthetic Aperture Radar imaging with moving objects. In each case, we analyze the forward operator F and the normal operator F ∗F , which appear in the mathematical expression for the recovered reflectivity function (i.e. the image). In general, by applying the backprojection operator F ∗ to the scattered waveform (i.e. the data), artifacts ...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMicrolocal properties of scattering matrices for Schrödinger operators on manifolds∗
We consider a d-dimensional C∞-manifold M such that M = Mc ∪ M∞, where Mc is relatively compact open submanifold, and M∞ is the noncompact part which is diffeomorphic to (0,∞)×∂M . Here ∂M is a compact manifold without boundary. In the following, we designate a point in M∞ by (r, θ) with r ∈ (0,∞) and θ ∈ ∂M . Often we also denote by θ ∈ ∂M a variables in a local coordinate of ∂M . Let H(θ)dθ b...
متن کاملMicrolocal analysis of wave-equation imaging and generalized-screen propagators
The imaging procedure of reflection seismic data can be generated by an extension of the ‘double-square-root equation’ to heterogeneous media, which yields the process of waveequation imaging. We carry a high-frequency analysis of the wave-equation imaging operator and show that it is microlocally equivalent to asymptotic approaches (e.g., MaslovKirchhoff/GRT). In an imaging-inversion procedure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2018
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/aadc2a